Search results for "scattering [p nucleus]"
showing 10 items of 198 documents
Time calibration of the ANTARES neutrino telescope
2011
The ANTARES deep-sea neutrino telescope comprises a three-dimensional array of photomultipliers to detect the Cherenkov light induced by upgoing relativistic charged particles originating from neutrino interactions in the vicinity of the detector. The large scattering length of light in the deep sea facilitates an angular resolution of a few tenths of a degree for neutrino energies exceeding 10 TeV. In order to achieve this optimal performance, the time calibration procedures should ensure a relative time calibration between the photomultipliers at the level of ~1 ns. The methods developed to attain this level of precision are described.
Reference-Plane Invariant Method for Measuring Electromagnetic Parameters of Materials
2010
This paper presents a simple and effective wideband method for the determination of material properties, such as the complex index of refraction and the complex permittivity and permeability. The method is explicit (non-iterative) and reference-plane invariant: it uses a certain combination of scattering parameters in conjunction with group-velocity data. This technique can be used to characterize both dielectric and magnetic materials. The proposed method is verified experimentally within a frequency range between 2 to 18 GHz on polytetrafluoroethylene and polyvinylchloride samples. A comprehensive error and stability analysis reveals that, similar to other methods based on transmission/re…
Structural characterization of a-plane Zn1−xCdxO (0 < x <0.085) thin films grown by metal-organic vapor phase epitaxy.
2006
Zn1−xCdxO(11math0) films have been grown on (01math2) sapphire (r–plane) substrates by metal-organic vapor phase epitaxy. A 800-nm-thick ZnO buffer, deposited prior to the alloy growth, helps to prevent the formation of pure CdO. A maximum uniform Cd incorporation of 8.5 at. % has been determined by Rutherford backscattering spectrometry. Higher Cd contents lead to the coexistence of Zn1−xCdxO alloys of different compositions within the same film. The near band-edge photoluminescence emission shifts gradually to lower energies as Cd is incorporated and reaches 2.93 eV for the highest Cd concentration (8.5 at. %). The lattice deformation, due to Cd incorporation, has been described using a n…
Transmission of light in deep sea water at the site of the Antares neutrino telescope
2005
The ANTARES neutrino telescope is a large photomultiplier array designed to detect neutrino-induced upward-going muons by their Cherenkov radiation. Understanding the absorption and scattering of light in the deep Mediterranean is fundamental to optimising the design and performance of the detector. This paper presents measurements of blue and UV light transmission at the ANTARES site taken between 1997 and 2000. The derived values for the scattering length and the angular distribution of particulate scattering were found to be highly correlated, and results are therefore presented in terms of an absorption length lambda_abs and an effective scattering length lambda_sct^eff. The values for …
Observation of light-by-light scattering in ultraperipheral Pb+Pb collisions with the ATLAS detector
2019
This Letter describes the observation of the light-by-light scattering process, γγ→γγ, in Pb+Pb collisions at √sNN=5.02 TeV. The analysis is conducted using a data sample corresponding to an integrated luminosity of 1.73 nb−1, collected in November 2018 by the ATLAS experiment at the LHC. Light-by-light scattering candidates are selected in events with two photons produced exclusively, each with transverse energy EγT>3 GeV and pseudorapidity |ηγ|<2.4, diphoton invariant mass above 6 GeV, and small diphoton transverse momentum and acoplanarity. After applying all selection criteria, 59 candidate events are observed for a background expectation of 12±3 events. The observed excess of events…
A 1D coupled Schrödinger drift-diffusion model including collisions
2005
We consider a one-dimensional coupled stationary Schroedinger drift-diffusion model for quantum semiconductor device simulations. The device domain is decomposed into a part with large quantum effects (quantum zone) and a part where quantum effects are negligible (classical zone). We give boundary conditions at the classic-quantum interface which are current preserving. Collisions within the quantum zone are introduced via a Pauli master equation. To illustrate the validity we apply the model to three resonant tunneling diodes.
Two-photon exchange corrections to elastic e− -proton scattering: Full dispersive treatment of πN states at low momentum transfers
2017
We evaluate the pion-nucleon intermediate-state contribution to the two-photon exchange (TPE) correction in the elastic electron-nucleon scattering within a dispersive framework. We calculate the contribution from all $\ensuremath{\pi}N$ partial waves using the MAID parametrization. We provide the corresponding TPE correction to the unpolarized $ep$ scattering cross section in the region of low momentum transfer ${Q}^{2}\ensuremath{\lesssim}0.064\text{ }\text{ }{\mathrm{GeV}}^{2}$, where no analytical continuation into the unphysical region of the TPE scattering amplitudes is required. We compare our result in the forward angular region with an alternative TPE calculation, in terms of struc…
Improved description of the pion-nucleon scattering phenomenology in covariant baryon chiral perturbation theory
2014
We highlight some of the recent advances in the application of chiral effective field theory (chiral EFT) with baryons to the $\pi N$ scattering process. We recall some problems that cast doubt on the applicability of chiral EFT to $\pi N$ and show how the relativistic formalism, once the $\Delta(1232)$-resonance is included as an explicit degree of freedom, solves these issues. Finally it is shown how this approach can be used to extract the $\sigma$-terms from phenomenological information.
Relativistic Kinematics and Phase Space
2015
Here we present a list of the most important formulae needed for calculating relativistic collisions and decays. It includes one-to-two and one-to-three body decays, and the two-to-two scattering process both in the center of mass and laboratory frames. It also includes simplified general formulae of one, two and three-body Lorentz invariant phase space. No explicit calculation is performed, however the reader is highly encouraged to reproduce the results presented here.
Measurements of Multi-boson production, Trilinear and Quartic Gauge Couplings with the ATLAS detector
2016
The ATLAS collaboration has carried a set of measurements that provide stringent tests of the electroweak sector of Standard Model, specifically on di- and multi-boson production cross sections and on triple and quartic gauge-boson couplings. Such measurements include cross sections for WV (V=W or Z) production in the leptonic or semileptonic channels, the production of a W or Z boson in association with photons, a Z boson in the vector-boson fusion channel and two same-charge W bosons in the vector-boson scattering channel. These measurements are compared to (N)NLO predictions of the Standard Model and provide model-independent constraints on new physics, by setting limits on anomalous gau…